Как построить график функции. Квадратичная и кубическая функции X2 4x график

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке Решая уравнение \(x"\left(t \right) = 0,\) определяем стационарные точки функции \(x\left(t \right):\) \[ {x"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 2t - 1 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 2 \pm \sqrt {16} }}{6} = - 1;\;\frac{1}{3}.} \] При \(t = 1\) функция \(x\left(t \right)\) достигает максимума, равного \ а в точке \(t = \large\frac{1}{3}\normalsize\) она имеет минимум, равный \[ {x\left({\frac{1}{3}} \right) } = {{\left({\frac{1}{3}} \right)^3} + {\left({\frac{1}{3}} \right)^2} - \left({\frac{1}{3}} \right) } = {\frac{1}{{27}} + \frac{1}{9} - \frac{1}{3} = - \frac{5}{{27}}.} \] Рассмотрим производную \(y"\left(t \right):\) \[ {y"\left(t \right) = {\left({{t^3} + 2{t^2} - 4t} \right)^\prime } } = {3{t^2} + 4t - 4.} \] Находим стационарные точки функции \(y\left(t \right):\) \[ {y"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 4t - 4 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 4 \pm \sqrt {64} }}{6} = - 2;\;\frac{2}{3}.} \] Здесь, аналогично, функция \(y\left(t \right)\) достигает максимума в точке \(t = -2:\) \ и минимума в точке \(t = \large\frac{2}{3}\normalsize:\) \[ {y\left({\frac{2}{3}} \right) } = {{\left({\frac{2}{3}} \right)^3} + 2{\left({\frac{2}{3}} \right)^2} - 4 \cdot \frac{2}{3} } = {\frac{8}{{27}} + \frac{8}{9} - \frac{8}{3} } = { - \frac{{40}}{{27}}.} \] Графики функций \(x\left(t \right)\), \(y\left(t \right)\) схематически показаны на рисунке \(15a.\)

Рис.15a

Рис.15b

Рис.15с

Заметим, что так как \[ {\lim\limits_{t \to \pm \infty } x\left(t \right) = \pm \infty ,}\;\;\; {\lim\limits_{t \to \pm \infty } y\left(t \right) = \pm \infty ,} \] то кривая \(y\left(x \right)\) не имеет ни вертикальных, ни горизонтальных асимптот. Более того, поскольку \[ {k = \lim\limits_{t \to \pm \infty } \frac{{y\left(t \right)}}{{x\left(t \right)}} } = {\lim\limits_{t \to \pm \infty } \frac{{{t^3} + 2{t^2} - 4t}}{{{t^3} + {t^2} - t}} } = {\lim\limits_{t \to \pm \infty } \frac{{1 + \frac{2}{t} - \frac{4}{{{t^2}}}}}{{1 + \frac{1}{t} - \frac{1}{{{t^2}}}}} = 1,} \] \[ {b = \lim\limits_{t \to \pm \infty } \left[ {y\left(t \right) - kx\left(t \right)} \right] } = {\lim\limits_{t \to \pm \infty } \left({\cancel{\color{blue}{t^3}} + \color{red}{2{t^2}} - \color{green}{4t} - \cancel{\color{blue}{t^3}} - \color{red}{t^2} + \color{green}{t}} \right) } = {\lim\limits_{t \to \pm \infty } \left({\color{red}{t^2} - \color{green}{3t}} \right) = + \infty ,} \] то кривая \(y\left(x \right)\) не имеет также и наклонных асимптот.

Определим точки пересечения графика \(y\left(x \right)\) с осями координат. Пересечение с осью абсцисс происходит в следующих точках: \[ {y\left(t \right) = {t^3} + 2{t^2} - 4t = 0,}\;\; {\Rightarrow t\left({{t^2} + 2t - 4} \right) = 0;} \]

  1. \({{t^2} + 2t - 4 = 0,}\;\; {\Rightarrow D = 4 - 4 \cdot \left({ - 4} \right) = 20,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 2 \pm \sqrt {20} }}{2}\normalsize = - 1 \pm \sqrt 5 .} \)

\ \[ {x\left({{t_2}} \right) = x\left({ - 1 - \sqrt 5 } \right) } = {{\left({ - 1 - \sqrt 5 } \right)^3} + {\left({ - 1 - \sqrt 5 } \right)^2} - \left({ - 1 - \sqrt 5 } \right) } = { - \left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \left({1 + 2\sqrt 5 + 5} \right) + 1 + \sqrt 5 } = { - 16 - 8\sqrt 5 + 6 + 2\sqrt 5 + 1 + \sqrt 5 } = { - 9 - 5\sqrt 5 \approx 20,18;} \] \[ {x\left({{t_3}} \right) = x\left({ - 1 + \sqrt 5 } \right) } = {{\left({ - 1 + \sqrt 5 } \right)^3} + {\left({ - 1 + \sqrt 5 } \right)^2} - \left({ - 1 + \sqrt 5 } \right) } = { - \left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \left({1 - 2\sqrt 5 + 5} \right) + 1 - \sqrt 5 } = { - 16 + 8\sqrt 5 + 6 - 2\sqrt 5 + 1 - \sqrt 5 } = { - 9 + 5\sqrt 5 \approx 2,18.} \] Таким же образом находим точки пересечения графика с осью ординат: \[ {x\left(t \right) = {t^3} + {t^2} - t = 0,}\;\; {\Rightarrow t\left({{t^2} + t - 1} \right) = 0;} \]
  1. \({{t^2} + t - 1 = 0,}\;\; {\Rightarrow D = 1 - 4 \cdot \left({ - 1} \right) = 5,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 1 \pm \sqrt {5} }}{2}\normalsize.} \)

\ \[ {y\left({{t_2}} \right) = y\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \frac{1}{2}\left({1 + 2\sqrt 5 + 5} \right) + 2\left({1 + \sqrt 5 } \right) } = { - \cancel{2} - \cancel{\sqrt 5} + 3 + \cancel{\sqrt 5} + \cancel{2} + 2\sqrt 5 } = {3 + 2\sqrt 5 \approx 7,47;} \] \[ {y\left({{t_3}} \right) = y\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \frac{1}{2}\left({1 - 2\sqrt 5 + 5} \right) + 2\left({1 - \sqrt 5 } \right) } = { - \cancel{2} + \cancel{\sqrt 5} + 3 - \cancel{\sqrt 5} + \cancel{2} - 2\sqrt 5 } = {3 - 2\sqrt 5 \approx - 1,47.} \] Разделим ось \(t\) на \(5\) интервалов: \[ {\left({ - \infty , - 2} \right),}\;\; {\left({ - 2, - 1} \right),}\;\; {\left({ - 1,\frac{1}{3}} \right),}\;\; {\left({\frac{1}{3},\frac{2}{3}} \right),}\;\; {\left({\frac{2}{3}, + \infty } \right).} \] На первом интервале \(\left({ - \infty , - 2} \right)\) значения \(x\) и \(y\) возрастают от \(-\infty\) до \(x\left({ - 2} \right) = - 2\) и \(y\left({ - 2} \right) = 8.\) Это схематически показано на рисунке \(15b.\)

На втором промежутке \(\left({ - 2, - 1} \right)\) переменная \(x\) возрастает от \(x\left({ - 2} \right) = - 2\) до \(x\left({ - 1} \right) = 1,\) а переменная \(y\) убывает от \(y\left({ - 2} \right) = 8\) до \(y\left({ - 1} \right) = 5.\) Здесь мы имеем участок убывающей кривой \(y\left(x \right).\) Она пересекает ось ординат в точке \(\left({0,3 + 2\sqrt 5 } \right).\)

На третьем интервале \(\left({ - 1,\large\frac{1}{3}\normalsize} \right)\) обе переменные убывают. Значение \(x\) изменяется от \(x\left({ - 1} \right) = 1\) до \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize.\) Соответственно, значение \(y\) уменьшается от \(y\left({ - 1} \right) = 5\) до \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize.\) Кривая \(y\left(x \right)\) при этом пересекает начало координат.

На четвертом интервале \(\left({\large\frac{1}{3}\normalsize,\large\frac{2}{3}\normalsize} \right)\) переменная \(x\) возрастает от \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize\) до \(x\left({\large\frac{2}{3}\normalsize} \right) = \large\frac{2}{{27}}\normalsize,\) а переменная \(y\) убывает от \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize\) до \(y\left({\large\frac{2}{3}\normalsize} \right) = - \large\frac{40}{{27}}\normalsize.\) На этом участке кривая \(y\left(x \right)\) пересекает ось ординат в точке \(\left({0,3 - 2\sqrt 5 } \right).\)

Наконец, на последнем интервале \(\left({\large\frac{2}{3}\normalsize, + \infty } \right)\) обе функции \(x\left(t \right)\), \(y\left(t \right)\) возрастают. Кривая \(y\left(x \right)\) пересекает ось абсцисс в точке \(x = - 9 + 5\sqrt 5 \approx 2,18.\)

Для уточнения формы кривой \(y\left(x \right)\) вычислим точки максимума и минимума. Производная \(y"\left(x \right)\) выражается в виде \[ {y"\left(x \right) = {y"_x} } = {\frac{{{y"_t}}}{{{x"_t}}} } = {\frac{{{{\left({{t^3} + 2{t^2} - 4t} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} } = {\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}} } = {\frac{{\cancel{3}\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\cancel{3}\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}} } = {\frac{{\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}}.} \] Изменение знака производной \(y"\left(x \right)\) показано на рисунке \(15c.\) Видно, что в точке \(t = - 2,\) т.е. на границе \(I\)-го и \(II\)-го интервалов кривая имеет максимум, а при \(t = \large\frac{2}{3}\normalsize\) (на границе \(IV\)-го и \(V\)-го интервалов) существует минимум. При переходе через точку \(t = \large\frac{1}{3}\normalsize\) производная также меняет знак с плюса на минус, но в этой области кривая \(y\left(x \right)\) не является однозначной функцией. Поэтому указанная точка экстремумом не является.

Исследуем также выпуклость данной кривой. Вторая производная \(y""\left(x \right)\) имеет вид: \[ y""\left(x \right) = {y""_{xx}} = \frac{{{{\left({{y"_x}} \right)}"_t}}}{{{x"_t}}} = \frac{{{{\left({\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}}} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} = \frac{{\left({6t + 4} \right)\left({3{t^2} + 2t - 1} \right) - \left({3{t^2} + 4t - 4} \right)\left({6t + 2} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{18{t^3} + 12{t^2} + 12{t^2} + 8t - 6t - 4 - \left({18{t^3} + 24{t^2} - 24t + 6{t^2} + 8t - 8} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{\cancel{\color{blue}{18{t^3}}} + \color{red}{24{t^2}} + \color{green}{2t} - \color{maroon}{4} - \cancel{\color{blue}{18{t^3}}} - \color{red}{30{t^2}} + \color{green}{16t} + \color{maroon}{8}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - \color{red}{6{t^2}} + \color{green}{18t} + \color{maroon}{4}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - 6\left({t - \frac{{9 - \sqrt {105} }}{6}} \right)\left({t - \frac{{9 + \sqrt {105} }}{6}} \right)}}{{{{\left({t + 1} \right)}^3}{{\left({3t - 1} \right)}^3}}}. \] Следовательно, вторая производная меняет свой знак на противоположный при переходе через следующие точки (рис.\(15с\)): \[ {{t_1} = - 1:\;\;x\left({ - 1} \right) = 1,}\;\; {y\left({ - 1} \right) = 5;} \] \[ {{t_2} = \frac{{9 - \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,24;}\;\; {y\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,91;} \] \[ {{t_3} = \frac{1}{3}:}\;\; {x\left({\frac{1}{3}} \right) = - \frac{5}{{27}},}\;\; {y\left({\frac{1}{3}} \right) = - \frac{{29}}{{27}};} \] \[ {{t_4} = \frac{{9 + \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,1;}\;\; {y\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,8.} \] Поэтому указанные точки представляют собой точки перегиба кривой \(y\left(x \right).\)

Схематический график кривой \(y\left(x \right)\) показан выше на рисунке \(15b.\)

«Натуральный логарифм» - 0,1. Натуральные логарифмы. 4. «Логарифмический дартс». 0,04. 7. 121.

«Степенная функция 9 класс» - У. Кубическая парабола. У = х3. 9 класс учитель Ладошкина И.А. У = х2. Гипербола. 0. У = хn, у = х-n где n – заданное натуральное число. Х. Показатель – четное натуральное число (2n).

«Квадратичная функция» - 1 Определение квадратичной функции 2 Свойства функции 3 Графики функции 4 Квадратичные неравенства 5 Вывод. Свойства: Неравенства: Подготовил ученик 8А класса Герлиц Андрей. План: График: -Промежутки монотонности при а > 0 при а < 0. Квадратичная функция. Квадратичные функции используются уже много лет.

«Квадратичная функция и её график» - Решение.у=4x А(0,5:1) 1=1 А-принадлежит. При а=1 формула у=аx принимает вид.

«8 класс квадратичная функция» - 1) Построить вершину параболы. Построение графика квадратичной функции. x. -7. Построить график функции. Алгебра 8 класс Учитель 496 школы Бовина Т. В. -1. План построения. 2) Построить ось симметрии x=-1. y.

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

y = 0 2 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2 , изображен пунктиром).

2. Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1 ).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

(рис. 3) .

Пример 3. Изобразить график функции y = log 2 |x|

Применяем схему, данную выше.

1) Строим график функции y = log 2 x (рис. 4) .

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y 0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x 2 + 2x – 1 (рис. 6) .

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7) .

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8) .

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9) .

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

4) Окончательный график изображен на рисунке (рис. 11) .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Случайные статьи

Вверх