Разработка ГПА нового поколения. Типы газоперекачивающих агрегатов с газотурбинным приводом и их характеристики Состав системы автоматического управления

ГК ТРЭМ Инжиниринг

ТРЭМ-МОДЕКОМ

Российские разработчики сухих газодинамических уплотнений

КРАТКОЕ ОПИСАНИЕ

СИСТЕМЫ ГАЗОДИНАМИЧЕСКИХ УПЛОТНЕНИЙ

НАГНЕТАТЕЛЯ ГПА-Ц16

Вашему вниманию предлагается краткое описание системы газодинамических уплотнений (СГДУ) для нагнетателей газоперекачивающих агрегатов (ГПА) мощностью 16МВт.

Использование СГДУ на несколько порядков уменьшает потери перекачиваемого газа, исключает применение масла для уплотнений и попадание масла в проточную часть нагнетателя. СГДУ могут устанавливаться в новые нагнетатели и в нагнетатели НЦ-16, эксплуатирующиеся в составе ГПА-Ц16 производства Сумского НПО им. Фрунзе.

В связи с тем, что нагнетатели ГПА-Ц16 имеют несколько вариантов конструктивного исполнения крышек, ЗАО "ТРЭМ-Модеком" до начала работ производит измерение мест под установку патронов уплотняющих на конкретном агрегате.

Возможны два варианта комплектации системы:

С использованием импортной контрольно-регулирующей аппаратуры и частично импортной арматуры.

С использованием отечественной арматуры и контрольно-регулирующей аппаратуры.

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ

Система газодинамических уплотнений состоит из двух патронов уплотняющих, установленных в нагнетателе, стойки управления и трубопроводов, соединяющих нагнетатель со стойкой.

1.1 Основные характеристики и параметры СГДУ приведены в таблице 1.

Таблица 1

Наименование

Единица измерения

Значение

1. Давление уплотняемого газа (изб) 2. Частота вращения ротора нагнетателя номинальная пределы изменения

3. Газ, подаваемый на рабочую ступень патрона – отбираемый из нагнетательного коллектора газ (за краном №2)

3.1 Давление на входе в стойку управления (изб)

3.2 Температура на входе в стойку, не более

3.3 Расход (на два патрона), не более

3.4 Давление перед рабочей ступенью

3.5 Размер частиц механических примесей в газе на входе в патрон не более

3.6 Номинальная утечка газа через I ступень патрона, не более

4. Разделительный (затворный) газ – воздух

4.1 Давление на входе в стойку (изб)

4.2 Температура на входе в стойку, не более

4.3 Расход (на два патрона), не более

4.4 Давление на входе в патрон (изб)

5. Максимальная допустимая для патрона двойная амплитуда радиальной вибрации ротора

6. Максимальное допустимое осевое смещение роторной части патрона относительно статорной

кгс/см 2 o C

500,0 на 0,5-1,0 кгс/см 2 выше давления

уплотняемого

1.2 Параметры, по которым предусматривается предупредительная

(предаварийная) сигнализация:

Утечка газа через рабочую ступень каждого патрона выше, ниже нормы;

Разность между давлением газа, подаваемого на рабочую ступень и давлением уплотняемого газа ниже нормы;

Перепад давлений на фильтрах газа и воздуха выше нормы: - концентрация метана в разделительном воздухе выше нормы; - давление разделительного воздуха ниже нормы.

1.3 Параметры, по которым предусматривается аварийная защита:

Давление утечки газа через рабочую ступень каждого патрона аварийное;

Концентрация метана в разделительном воздухе аварийная;

Давление разделительного воздуха аварийное;

Значения уставок предупредительной сигнализации и аварийных защит уточняются на стадии разработки технического задания.

2. ОСОБЕННОСТИ КОНСТРУКЦИИ

2.1 Особенность данных газодинамических уплотнений состоит в том, что они содержат две последовательно расположенные уплотнительные ступени. Первая ступень по ходу газа – рабочая, вторая – страховочная. Основные элементы уплотнительной ступени: вращающийся твердосплавный диск и неподвижное графитовое кольцо.

Производством ЗАО "ТРЭМ-Модеком" освоено изготовление нереверсивных

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв.см. На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв.см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град.С.

Агрегат состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации.

В состав ГПА входят:

­ турбоблок с газотурбинным двигателем НК-16СТ;

­ воздухоочистительное устройство (ВОУ);

­ шумоглушитель всасывающего тракта;

­ всасывающая камера;

­ промежуточный блок;

­ блок вентиляции;

­ два блока маслоохладителей;

­ выхлопной диффузор;

­ выхлопная шахта;

­ шумоглушители выхлопного тракта;

­ блок нагнетателя с центробежным нагнетателем НЦ-16;

­ блок автоматики;

­ блок маслоагрегатов;

­ блок фильтров топливного газа;

­ система подогрева циклового воздуха;

­ система пожаротушения;

­ система обогрева контейнера.

Блоки агрегата

ТУРБОБЛОК включает в себя следующие сборочные единицы: контейнер, приводной двигатель НК-16СТ, установленный на подмоторной раме. Кроме того, в турбоблоке размещены отдельные сборочные единицы маслосистемы, системы обогрева, автоматического пожаротушения, обогрева циклового воздуха и автоматического управления агрегатом.

Контейнер турбоблока является помещением для размещения основных сборочных единиц и систем агрегата. Обеспечивает определенный микроклимат для их эксплуатации и необходимые условия труда для обслуживающего персонала в период проведения ремонтных и регламентных работ. Контейнер при помощи герметичной перегородки разделен на два изолированных помещения - отсек двигателя и отсек нагнетателя. Вентиляция отсека двигателя осуществляется вентиляторами, установленными в блоке вентиляции. Вентиляция отсека нагнетателя осуществляется вентилятором, установленным в верхней части этого отсека.

ВОЗДУХООЧИСТИТЕЛЬНОЕ УСТРОЙСТВО предназначено для очистки от пыли и других механических включений циклового воздуха, поступающего из атмосферы в компрессор двигателя. ВОУ состоит из камеры, фильтрующих элементов, короба отсоса пыли, вентиляторов отсоса пыли, байпасных клапанов и решеток для подогрева циклового воздуха. Очистка воздуха производится в инерционно-жалюзийных сепараторах засчет резкого поворота потока в фильтрующих элементах. На задней стенке камеры размещены два байпасных клапана (БК). БК открываются автоматически при достижении разрежения в камере ВОУ 80 мм вод.ст. При снижении разрежения до 50 мм вод.ст. клапаны закрываются.

КАМЕРА ВСАСЫВАНИЯ служит для направления очищенного в ВОУ атмосферного воздуха к осевому компрессору двигателя. В проемы каркаса камеры установлен шумоглушитель, представляющий собой специальные щиты, заполненные теплоизоляционными звукопоглощающими матами из супертонкого базальтового волокна. В центральном проеме стенки установлены двустворчатые ворота, а на задней стенке - одностворчатые. Ворота служат для закатки и выкатки двигателя при его замене.

Рис. 1.33. Газоперекачивающий агрегат ГПА-Ц-16 (общий вид)

1 – камера всасывания; 2 – шумоглушители всаса; 3 – воздухоочистительное устройство; 4 – система подогрева циклового воздуха; 5 – утилизатор; 6 – шумоглушители выхлопа; 7 – диффузор; 8 – опора выхлопной части; 9 – турбоблок 10 – блок маслоагрегатов.

БЛОК ПРОМЕЖУТОЧНЫЙ предназначен для формирования равномерного потока воздуха непосредственно перед входным направляющим аппаратом осевого омпрессора двигателя. Блок состоит из каркаса и патрубка круглого сечения, выполненного из листовой нержавеющей стали.

Рис. 1.34. Газоперекачивающий агрегат ГПА-Ц-16 (компановка)

1 – камера сгорания; 2 – шумоглушители; 3 – воздухоочистительное устройство;

4 – блок с вентилями; 5 – промежуточный блок; 6 – патрубок; 7 – отсек двигателя:

8 – двигатель НК-16СТ; 9 – выхлопная улитка; 10 – шумоглушители выхлопа;

11 – диффузор; 12 – герметическая перегородка; 13 – промежуточный вал;

14 – гидроаккумулятор; 15 – нагнетатель НЦ-16; 16 – отсек нагнетателя; 17 – маслобак нагнетателя.

ВЫХЛОПНОЕ УСТРОЙСТВО с шумоглушением служит для выброса выхлопных азов и снижения шума выхлопа двигателя. Устройство состоит из диффузора и шумоглушителя. Диффузор предназначен для плавного снижения скорости выхлопных газов и представляет собой цельносварную конструкцию, состоящую из каркаса, внутренние проемы которого заполнены звукопоглощающим материалом. Шумоглушитель пластинчато-щелевого типа. Пластины имеют обтекаемую форму. Сварной каркас пластины выполнен из гнутых профилей и обшит с двух сторон перфорированным стальным листом. Пространство между листами заполнено звукопоглощающим материалом.

БЛОК МАСЛООХЛАДИТЕЛЕЙ предназначен для охлаждения масла, циркулирующего в системах смазки и уплотнения агрегата. Компоновка ГПА предусматривает установку двух блоков, в каждом из которых установлено по два аппарата воздушного охлаждения масла.

БЛОК ВЕНТИЛЯЦИИ предназначен для размещения оборудования, обеспечивающего вентиляцию отсека двигателя и просос атмосферного воздуха через маслоохладители при отсутствии электроэнергии. Блок вентиляции включает в себя каркас, вентиляторы, патрубок и заслонки с гидроприводом. Центробежные вентиляторы подают очищенный воздух, отбираемый из отсека шумоглушителя ВОУ. Поворотные заслонки, предназначенные для открытия прохода, соединяющего блок вентиляции с всасывающим трактом двигателя, при этом закрыты. При отключении вентиляторов вентиляция отсека двигателя осуществляется за счет прососа воздуха из турбоблока через открытые заслонки, остановленные вентиляторы и далее на всас двигателя. Управление заслонками производится при помощи гидропривода.

Рис. 1.35. Газоперекачивающий агрегат ГПА-Ц-16 (схема)

БЛОК МАСЛОАГРЕГАТОВ предназначен для размещения маслоагрегатов и арматуры маслосистемы, что позволяет производить их обслуживание при работе ГПА. Для вентиляции блока в нем предусмотрен вентилятор.

БЛОК АВТОМАТИКИ служит для размещения приборных щитов и другого оборудования систем автоматического управления ГПА.

БЛОК ФИЛЬТРОВ ТОПЛИВНОГО ГАЗА предназначен для очистки газа от возможных загрязнений в трубопроводах между станционным блоком подготовки топливного и пускового газа и входным в камеру сгорания двигателя. В блоке установлено два фильтра, обвязка которых позволяет включать в работу фильтры поочередно или оба одновременно. Степень фильтрации 10 мкм.

БЛОК ПОЖАРОТУШЕНИЯ служит для размещения установки автоматического газового пожаротушения. Автоматическая система пожаротушения обеспечивает противопожарную защиту отсеков двигателя и нагнетателя за счет своевременного обнаружения очага возгорания и последующего подавления его путем автоматической подачи огнегасящего вещества хладона 114В2.

СИСТЕМА ОБОГРЕВА предназначена для разогрева агрегата в холодное время года перед пуском и для обеспечения нормальных климатических условий при работе приборов и оборудования, установленных в отсеках контейнера. Обогрев осуществляется горячим воздухом, отбираемым от работающего двигателя за компрессором высокого давления (температура 280 град.С). Отбираемый горячий воздух поступает в станционную систему обогрева, которая объединяет в единую сеть системы обогрева всех агрегатов, установленных на компрессорной станции. Обогрев ГПА при отсутствии в станционной сети горячего воздуха осуществляется от моторных подогревателей типа УМП-350.

СИСТЕМА ПОДОГРЕВА ЦИКЛОВОГО ВОЗДУХА предназначена для предотвращения обледенения всасывающего тракта двигателя в диапазоне температур атмосферного воздуха от +7 до -10 град.С. Подогрев циклового воздуха осуществляется подачей на вход воздухоочистительного устройства горячих газов из выхлопной шахты агрегата. Газы эжектируются сжатым воздухом, отбираемым из компрессора низкого давления двигателя. Горячая газовоздушная смесь направляется на распределительную решетку, установленную на входе в ВОУ

Агрегат ГПА-Ц-16

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв. см.

На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв. см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град. С.

Газотурбинный двигатель НК-16СТ

воздухоочистительный газотурбинный двигатель агрегат

Стационарный газотурбинный двигатель НК16-СТ создан на базе авиационного турбовентиляторного двигателя НК-8-2У. Представляет из себя двухкаскадную трехвальную ГТУ. Состоит из двух модулей - газогенератора и свободной турбины, имеющих собственные рамы. Модули при эксплуатации могут заменяться.

Нагнетатель НЦ-16

Нагнетатель представляет из себя двухступенчатую центробежную машину, предназначенную для сжатия природного газа. Состоит из следующих составных частей. Наружного корпуса, который представляет собой стальной кованый цилиндр. К цилиндру с внешней стороны приварены стальные кованые патрубки - всасывающий и нагнетательный. К нижней части приварены опорные лапы нагнетателя, а в верхней части - опорные лапы под два гидроаккумулятора. С обоих торцов корпус закрыт стальными коваными крышками, которые фиксируются разрезными стопорныим кольцами и кронштейнами. Внутри наружного корпуса расположен внутренний корпус. Внутренний корпус состоит из камеры всасывания, диафрагмы, диффузоров, входного и обратного направляющих аппаратов. В нижней части внутреннего корпуса закреплены ролики, из которых внутренний корпус вкатывается в наружный.

Воздухоочистительные устройства / ВОУ-110-4Ц для агрегата ГПА-Ц-16

Преимущества и особенности

Использование комбинированной системы фильтрации (КСФ) на базе фильтров EMW filtertechnik VKKW RU-400-4-MG-1-PF-MPK-48/22 (производства фирмы EMW, Германия) обеспечивает очистку воздуха до степени F9 (максимальный размер частиц пыли после фильтров - не более 5 мкм);

конструкция самого фильтра позволяет легко производить его замену в случае засорения;

благодаря использованию фильтров EMW ВОУ обладает значительно меньшим сопротивлением по сравнению с аналогами;

в качестве обшивки козырька используется поликарбонат, крепящийся к каркасу при помощи алюминиевых профилей и саморезов, и обладающий рядом преимуществ по сравнению с другими материалами: невысокой стоимостью, меньшей массой, отсутствием коррозии, возможностью монтажа без использования сварки;

байпасный клапан, установленный сверху блока фильтров, автоматически срабатывает при перепаде давления 70 мм. вод. ст на всасе и возвращается в исходное положение при перепаде давления 52 мм. вод. ст. Обогрев клапана позволяет срабатывать ему при любом диапазоне температур;

конструкция блоков фильтров в виде призм позволяет уменьшить площадь и массу ВОУ;

конструкция козырька ВОУ обеспечивает скорость воздуха на всасе до 0,8 м/с, что исключает попадание атмосферных осадков под козырек.

Технические характеристики

Наименование параметра

Изготовитель

ООО НПП «35-й Механический Завод»

Тип очистки воздуха

Комбинированная система фильтрации (EMW)

Количество ступеней очистки

3 ступени

Количество циклонов, шт.

Количество фильтров, шт.

Номинальный расход воздуха, кг/с

Гидравлическое сопротивление ВОУ, мм. вод. ст

Эффективность очистки воздуха от частиц более 5 мкм., %

Масса, кг

Габариты, мм

10450х6900х5780



Газотурбинный двигатель НК-16СТ


Газотурбинный двигатель НК-16СТ для газодобывающей отрасли создан на базе авиационного двигателя НК-8-2У, что обеспечивает его высокую надежность и эффективность. Применяется в газоперекачивающих агрегатах ГПА-Ц-16.

Серийное изготовление и поставка двигателя НК-16СТ на магистральные газопроводы производятся с 1982 года. Выпущен 1141 двигатель. Суммарная наработка парка двигателей составляет больше 40 миллионов часов. В связи с высокой надежностью данный привод нашел применение вэнергетике. В настоящее время на более чем 30 электростанциях двигатели НК-16СТ используют в качестве приводов энергоустановок, работающих на попутном нефтяном газе.

Технические характеристики

Мощность, не менее:

Эффективный КПД, не менее:

Диапазон изменения частоты вращения приводного вала свободной турбины:

3975-5350 об./мин.

Окислов азота:

Окиси углерода:

Максимальный уровень звукового давления:

Масса двигателя с рамой:

Расход топливного газа:

Запуск двигателя:

автоматический

Температура газа на выходе из свободной турбины:

Гарантийный ресурс:

Межремонтный ресурс:

25 000 часов

Назначенный ресурс:

100 000 часов

Применяемое масло:


Система электрического запуска газотурбинного двигателя

Электростартер СТЭ-18СТ

Одна из последних разработок ЗАО «Эверест-турбосервис» и ОАО «Электропривод» (г. Киров) - создание электростартера СТЭ-18СТ для запуска газотурбинного двигателя НК-16СТ и его модификаций мощностью 16-20 МВт, используемого ОАО «Газпром» более чем в 600 газоперекачивающих агрегатах.

Преимущество новой разработки заключается в замене турбодетандерного запуска двигателя с помощью сжатого природного газа (в этом случае в атмосферу суммарно выбрасывается до 3 млн. м3 природного газа в год) на экологически чистый электрозапуск. Это позволит упростить систему запуска, снизить расход природного газа, повысить экологическую и технологическую безопасность. Данная разработка отвечает всем требованиям по экологичности эксплуатируемого оборудования.

Электростартер устанавливается на место пневмостартера и не требует доработки места стыковки с коробкой привода агрегатов двигателя, что позволяет производить монтаж системы электрозапуска с электростартером СТЭ-18СТ в условиях эксплуатации.

Номинальная мощность электростартера СТЭ-18СТ - 65 кВт, номинальный крутящий момент, развиваемый электростартером, составляет 245 Н/м (25 кгс/м), режим его работы повторно-кратковременный. Управление электростартером осуществляется блоком управления БУС-18СТ, который преобразует напряжение переменного трехфазного тока 380В, 50Гц в напряжение переменного трехфазного тока от 0 до 380В и частотой от 0 до 400Гц. Блок управления определяет готовность электростартера к работе, задает режимы его работы, момент вращения электростартера, выдает сигнал на отключение, а так же позволяет провести диагностику и настройку параметров электростартера.

Электростартер СТЭ-18СТ сертифицирован и имеет маркировку взрывозащиты 1ExdIIВТ3. Его применение разрешено во взрывоопасных зонах.

В ноябре 2006 года электростартер СТЭ-18СТ в составе системы электрозапуска двигателя НК-16СТ прошел успешные стендовые испытания на стенде Зеленодольского машиностроительного завода. Испытания электростартера проводились в соответствии с действующим на компрессорных станциях ОАО «Газпром» алгоритмом запуска двигателей НК-16СТ, то есть неоднократно повторялась серия из трех холодных прокруток и запуска двигателя. Максимальное значение температуры обмоток статора электростартера при этом составило 76°С.

В соответствии с «Программой приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз» в апреле-мае 2007 года на двигателе НК-16СТ выполнена замена воздушного стартера на электростартер СТЭ-18СТ с блоком управления БУС-18СТ. После отладки установленного оборудования агрегат ГПА-Ц-16 был выведен на режим «Магистраль».

В июне 2007 года система электрического запуска двигателя НК-16СТ без замечаний прошла предварительные испытания в объеме «Программы приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз». Электростартер СТЭ-18СТ полностью обеспечил выполнение циклограммы холодной прокрутки, горячего запуска и промывки газовоздушного тракта двигателя НК-16СТ.

В августе 2007 года с целью оценки эффективности и работоспособности системы электрического запуска двигателей НК-16СТ (НК-16-18СТ) с электростартером СТЭ-18СТ и принятия решения по дальнейшему внедрению данной системы специальной комиссией проведены приемочные испытания на объекте ОАО «Газпром» - КС «Вязниковская» ООО «Волготрансгаз». На основании положительного результата приемочных испытаний Приемочной комиссией ОАО «Газпром» принято решение о доработке остальных двигателей НК-16СТ на КС «Вязниковская» системами электрического запуска и рекомендовано применение данной системы электрозапуска на других объектах ОАО «Газпром».

На двигателях НК-16СТ (НК16-18СТ) в июне 2009 года на КС «Вязниковская» специалистами ЗАО «Эверест-Турбосервис» и ОАО «Электропривод» была выполнена доработка системы запуска путем замены пневмостаретера на электростартер СТЭ-18СТ. Решение о переводе всех двигателей КС «Вязниковская» на систему электрического запуска было принято после 2,5 лет лидерной эксплуатации системы с электростартером СТЭ-18СТ на одном из двигателей этой станции. За это время электростартер выполнил около 500 запусков и не имел дефектов.

В процессе оборудования двигателей системой электрозапуска проводилась доработка электротехнической части газоперекачивающего агрегата ГПА-Ц-16 для подключения электростартера к основному вводу существующего вводно-распределительного устройства, расположенного в отсеке автоматики ГПА. На каждом двигателе после монтажа системы электрического запуска и доработки электрики ГПА выполнялись холодные прокрутки, горячие запуски и промывка газовоздушного тракта, после чего агрегат по акту передавался эксплуатационниками.

Кроме того, продолжаются испытания оснащенного электростартером СТЭ-18СТ двигателя НК-361 мощностью 25 МВт, установленного на магистральном газотурбовозе ГТ-1.

Технический потенциал электростартера СТЭ-18СТ, проявленный при испытаниях, позволяет использовать его в системах электрозапуска газотурбинных двигателей других типоразмеров и мощности.

Блок управления стартером БУС-18СТ

Технические характеристики:

· Электропитание и управление электростартером осуществляется от блока управления стартером БУС-18СТ.

· Электропитание БУС осуществляется от сети переменного трехфазного тока:

· Напряжение питание 380В

· Частота напряжения 50Гц

· Номинальная мощность электростартёра 60…65кВт

· Номинальный момент, развиваемый электростартёром 245Н м (25 кгс м)

· Максимальный момент, развиваемый электростартёром, не менее 539Н м (55 кгс м)

· Ток, потребляемый электростартёром

· при номинальном моменте, не более 120А

· Частота выходного вала электростартёра:

o на режиме холодной прокрутки 1380 об/мин

o на режиме горячего запуска 2600 об/мин

· Напряжение управляющих сигналов 27В

· Режим работы повторно-кратковременный

· Масса электростартёра, не более 57 кг

· 230х440ÆГабариты электростартёра

· Габариты БУС 1500х1000х400 мм

· Масса БУС 250 кг

Нагнетатель НЦ-16

Корпус нагнетателя позволяет устанавливать проточную часть на весь ряд мощностей двигателей и получить высокий политропный КПД на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36; 1,44 и 1,5.

Для газоперекачивающих агрегатов производятся современные нагнетатели с электромагнитным подвесом ротора и газодинамическими уплотнениями. Нагнетатели предназначены для перекачки природного газа по магистральным газопроводам. Базовые корпуса нагнетателей расcчитаны на установку сменных проточных частей, на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36, 1,44 и 1,5.

Нагнетатели поставляются также и в составе нагнетательных установок, включающих блок нагнетателя с системами обеспечения.

Корпус нагнетателя на сборке

Установка нагнетательная центробежная УНЦ-16-76/1,44 применена в ГПА-16 «Волга», нагнетатель НЦ-12 56/1,44 применен в ГПА - 12 «Урал» и нагнетатель НЦ-8-56/1,44 применен в АГПУ - 8 «Волга». Нагнетатель НЦ-16-76/1,44 создан на высоком техническом уровне с использованием магнитного подвеса ротора и «сухих» газодинамических уплотнений. Применение пространственных лопаток рабочих колес и безлопаточного диффузора обеспечило получение политропного КПД в рабочей точке 85% и широкий диапазон эффективной работы нагнетателя. Конструктивно нагнетатели выполнены на базе лицензий фирмы «Дрессер» (США).

Твердосплавное кольцо со спиральными канавками «сухого» уплотнения

Предусмотрена возможность установки в нагнетатель любого из двух концевых уплотнений: торцовых масляных и «сухих» газодинамических. Подшипники применяются как гидродинамические масляные, так и «сухие» электромагнитные.

Техническая характеристика нагнетателей и нагнетательных установок с газотурбинным приводом

Область применения

Назначение

Произво-дитель- ность м 3 /мин

Давление, МПа (кгс/см 2) (абс).

Газотурбинный двигатель

Габариты установки, мм

Масса установки, кг





Начальное

Конечное

Мощность, кВт

Частота вращения ротора, об/мин



АГПУ-8 «Волга»

Перекачка природного газа по магистраль- ному газо-проводу

2340х 1320х 1380

ГПА-12 «Урал»


2620х 2670х 1700


2900х 2500х 1760

УНЦ16-76/ 1,44

ГПА-16 «Волга»


14550х 12000х 5300


Литература

1. http://compressormash.ru

Http://www.new.turbinist.ru

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Агрегат ГПА-Ц-16

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв. см.

На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв. см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град. С.

Газотурбинный двигатель НК -1 6СТ

воздухоочистительный газотурбинный двигатель агрегат

Стационарный газотурбинный двигатель НК16-СТ создан на базе авиационного турбовентиляторного двигателя НК-8-2У. Представляет из себя двухкаскадную трехвальную ГТУ. Состоит из двух модулей - газогенератора и свободной турбины, имеющих собственные рамы. Модули при эксплуатации могут заменяться.

Нагнетатель НЦ-16

Нагнетатель представляет из себя двухступенчатую центробежную машину, предназначенную для сжатия природного газа. Состоит из следующих составных частей. Наружного корпуса, который представляет собой стальной кованый цилиндр. К цилиндру с внешней стороны приварены стальные кованые патрубки - всасывающий и нагнетательный. К нижней части приварены опорные лапы нагнетателя, а в верхней части - опорные лапы под два гидроаккумулятора. С обоих торцов корпус закрыт стальными коваными крышками, которые фиксируются разрезными стопорныим кольцами и кронштейнами. Внутри наружного корпуса расположен внутренний корпус. Внутренний корпус состоит из камеры всасывания, диафрагмы, диффузоров, входного и обратного направляющих аппаратов. В нижней части внутреннего корпуса закреплены ролики, из которых внутренний корпус вкатывается в наружный.

Воздухоочистительные устройства / ВОУ -1 10 -4 Ц для агрегата ГПА -Ц-1 6

Преимущества и особенности

Использование комбинированной системы фильтрации (КСФ) на базе фильтров EMW filtertechnik VKKW RU-400-4-MG-1-PF-MPK-48/22 (производства фирмы EMW, Германия) обеспечивает очистку воздуха до степени F9 (максимальный размер частиц пыли после фильтров - не более 5 мкм);

Конструкция самого фильтра позволяет легко производить его замену в случае засорения;

Благодаря использованию фильтров EMW ВОУ обладает значительно меньшим сопротивлением по сравнению с аналогами;

В качестве обшивки козырька используется поликарбонат, крепящийся к каркасу при помощи алюминиевых профилей и саморезов, и обладающий рядом преимуществ по сравнению с другими материалами: невысокой стоимостью, меньшей массой, отсутствием коррозии, возможностью монтажа без использования сварки;

Байпасный клапан, установленный сверху блока фильтров, автоматически срабатывает при перепаде давления 70 мм. вод. ст на всасе и возвращается в исходное положение при перепаде давления 52 мм. вод. ст. Обогрев клапана позволяет срабатывать ему при любом диапазоне температур;

Конструкция блоков фильтров в виде призм позволяет уменьшить площадь и массу ВОУ;

Конструкция козырька ВОУ обеспечивает скорость воздуха на всасе до 0,8 м/с, что исключает попадание атмосферных осадков под козырек.

Технические характеристики

Наименование параметра

Изготовитель

ООО НПП «35-й Механический Завод»

Тип очистки воздуха

Комбинированная система фильтрации (EMW)

Количество ступеней очистки

3 ступени

Количество циклонов, шт.

Количество фильтров, шт.

Номинальный расход воздуха, кг/с

Гидравлическое сопротивление ВОУ, мм. вод. ст

Эффективность очистки воздуха от частиц более 5 мкм., %

Масса, кг

Габариты, мм

10450х6900х5780

Газотурбинный двигатель НК-16СТ

Газотурбинный двигатель НК-16СТ для газодобывающей отрасли создан на базе авиационного двигателя НК-8-2У, что обеспечивает его высокую надежность и эффективность. Применяется в газоперекачивающих агрегатах ГПА-Ц-16.

Серийное изготовление и поставка двигателя НК-16СТ на магистральные газопроводы производятся с 1982 года. Выпущен 1141 двигатель. Суммарная наработка парка двигателей составляет больше 40 миллионов часов. В связи с высокой надежностью данный привод нашел применение вэнергетике. В настоящее время на более чем 30 электростанциях двигатели НК-16СТ используют в качестве приводов энергоустановок, работающих на попутном нефтяном газе.

Технические характеристики

Мощность, не менее:

Эффективный КПД, не менее:

Диапазон изменения частоты вращения приводного вала свободной турбины:

3975-5350 об./мин.

Окислов азота:

Окиси углерода:

Максимальный уровень звукового давления:

Масса двигателя с рамой:

Расход топливного газа:

Запуск двигателя:

автоматический

Температура газа на выходе из свободной турбины:

Гарантийный ресурс:

Межремонтный ресурс:

25 000 часов

Назначенный ресурс:

100 000 часов

Применяемое масло:

Система электрического запуска газотурбинного двигателя

Электростартер СТЭ-18СТ

Одна из последних разработок ЗАО «Эверест-турбосервис» и ОАО «Электропривод» (г. Киров) - создание электростартера СТЭ-18СТ для запуска газотурбинного двигателя НК-16СТ и его модификаций мощностью 16-20 МВт, используемого ОАО «Газпром» более чем в 600 газоперекачивающих агрегатах.

Преимущество новой разработки заключается в замене турбодетандерного запуска двигателя с помощью сжатого природного газа (в этом случае в атмосферу суммарно выбрасывается до 3 млн. м3 природного газа в год) на экологически чистый электрозапуск. Это позволит упростить систему запуска, снизить расход природного газа, повысить экологическую и технологическую безопасность. Данная разработка отвечает всем требованиям по экологичности эксплуатируемого оборудования.

Электростартер устанавливается на место пневмостартера и не требует доработки места стыковки с коробкой привода агрегатов двигателя, что позволяет производить монтаж системы электрозапуска с электростартером СТЭ-18СТ в условиях эксплуатации.

Номинальная мощность электростартера СТЭ-18СТ - 65 кВт, номинальный крутящий момент, развиваемый электростартером, составляет 245 Н/м (25 кгс/м), режим его работы повторно-кратковременный. Управление электростартером осуществляется блоком управления БУС-18СТ, который преобразует напряжение переменного трехфазного тока 380В, 50Гц в напряжение переменного трехфазного тока от 0 до 380В и частотой от 0 до 400Гц. Блок управления определяет готовность электростартера к работе, задает режимы его работы, момент вращения электростартера, выдает сигнал на отключение, а так же позволяет провести диагностику и настройку параметров электростартера.

Электростартер СТЭ-18СТ сертифицирован и имеет маркировку взрывозащиты 1ExdIIВТ3. Его применение разрешено во взрывоопасных зонах.

В ноябре 2006 года электростартер СТЭ-18СТ в составе системы электрозапуска двигателя НК-16СТ прошел успешные стендовые испытания на стенде Зеленодольского машиностроительного завода. Испытания электростартера проводились в соответствии с действующим на компрессорных станциях ОАО «Газпром» алгоритмом запуска двигателей НК-16СТ, то есть неоднократно повторялась серия из трех холодных прокруток и запуска двигателя. Максимальное значение температуры обмоток статора электростартера при этом составило 76°С.

В соответствии с «Программой приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз» в апреле-мае 2007 года на двигателе НК-16СТ выполнена замена воздушного стартера на электростартер СТЭ-18СТ с блоком управления БУС-18СТ. После отладки установленного оборудования агрегат ГПА-Ц-16 был выведен на режим «Магистраль».

В июне 2007 года система электрического запуска двигателя НК-16СТ без замечаний прошла предварительные испытания в объеме «Программы приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз». Электростартер СТЭ-18СТ полностью обеспечил выполнение циклограммы холодной прокрутки, горячего запуска и промывки газовоздушного тракта двигателя НК-16СТ.

В августе 2007 года с целью оценки эффективности и работоспособности системы электрического запуска двигателей НК-16СТ (НК-16-18СТ) с электростартером СТЭ-18СТ и принятия решения по дальнейшему внедрению данной системы специальной комиссией проведены приемочные испытания на объекте ОАО «Газпром» - КС «Вязниковская» ООО «Волготрансгаз». На основании положительного результата приемочных испытаний Приемочной комиссией ОАО «Газпром» принято решение о доработке остальных двигателей НК-16СТ на КС «Вязниковская» системами электрического запуска и рекомендовано применение данной системы электрозапуска на других объектах ОАО «Газпром».

На двигателях НК-16СТ (НК16-18СТ) в июне 2009 года на КС «Вязниковская» специалистами ЗАО «Эверест-Турбосервис» и ОАО «Электропривод» была выполнена доработка системы запуска путем замены пневмостаретера на электростартер СТЭ-18СТ. Решение о переводе всех двигателей КС «Вязниковская» на систему электрического запуска было принято после 2,5 лет лидерной эксплуатации системы с электростартером СТЭ-18СТ на одном из двигателей этой станции. За это время электростартер выполнил около 500 запусков и не имел дефектов.

В процессе оборудования двигателей системой электрозапуска проводилась доработка электротехнической части газоперекачивающего агрегата ГПА-Ц-16 для подключения электростартера к основному вводу существующего вводно-распределительного устройства, расположенного в отсеке автоматики ГПА. На каждом двигателе после монтажа системы электрического запуска и доработки электрики ГПА выполнялись холодные прокрутки, горячие запуски и промывка газовоздушного тракта, после чего агрегат по акту передавался эксплуатационниками.

Кроме того, продолжаются испытания оснащенного электростартером СТЭ-18СТ двигателя НК-361 мощностью 25 МВт, установленного на магистральном газотурбовозе ГТ-1.

Технический потенциал электростартера СТЭ-18СТ, проявленный при испытаниях, позволяет использовать его в системах электрозапуска газотурбинных двигателей других типоразмеров и мощности.

Блок управления стартером БУС-18СТ

Технические характеристики:

· Электропитание и управление электростартером осуществляется от блока управления стартером БУС-18СТ.

· Электропитание БУС осуществляется от сети переменного трехфазного тока:

· Напряжение питание 380В

· Частота напряжения 50Гц

· Номинальная мощность электростартёра 60…65кВт

· Номинальный момент, развиваемый электростартёром 245Н*м (25 кгс*м)

· Максимальный момент, развиваемый электростартёром, не менее 539Н*м (55 кгс*м)

· Ток, потребляемый электростартёром

· при номинальном моменте, не более 120А

· Частота выходного вала электростартёра:

o на режиме холодной прокрутки 1380 об/мин

o на режиме горячего запуска 2600 об/мин

· Напряжение управляющих сигналов 27В

· Режим работы повторно-кратковременный

· Масса электростартёра, не более 57 кг

· 230х440Габариты электростартёра

· Габариты БУС 1500х1000х400 мм

· Масса БУС 250 кг

Нагнетатель НЦ -1 6

Корпус нагнетателя позволяет устанавливать проточную часть на весь ряд мощностей двигателей и получить высокий политропный КПД на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36; 1,44 и 1,5.

Для газоперекачивающих агрегатов производятся современные нагнетатели с электромагнитным подвесом ротора и газодинамическими уплотнениями. Нагнетатели предназначены для перекачки природного газа по магистральным газопроводам. Базовые корпуса нагнетателей расcчитаны на установку сменных проточных частей, на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36, 1,44 и 1,5.

Нагнетатели поставляются также и в составе нагнетательных установок, включающих блок нагнетателя с системами обеспечения.

Корпус нагнетателя на сборке

Установка нагнетательная центробежная УНЦ-16-76/1,44 применена в ГПА-16 «Волга», нагнетатель НЦ-12 56/1,44 применен в ГПА - 12 «Урал» и нагнетатель НЦ-8-56/1,44 применен в АГПУ - 8 «Волга». Нагнетатель НЦ-16-76/1,44 создан на высоком техническом уровне с использованием магнитного подвеса ротора и «сухих» газодинамических уплотнений. Применение пространственных лопаток рабочих колес и безлопаточного диффузора обеспечило получение политропного КПД в рабочей точке 85% и широкий диапазон эффективной работы нагнетателя. Конструктивно нагнетатели выполнены на базе лицензий фирмы «Дрессер» (США).

Твердосплавное кольцо со спиральными канавками «сухого» уплотнения

Предусмотрена возможность установки в нагнетатель любого из двух концевых уплотнений: торцовых масляных и «сухих» газодинамических. Подшипники применяются как гидродинамические масляные, так и «сухие» электромагнитные.

Техническая характеристика нагнетателей и нагнетательных установок с газотурбинным приводом

Область применения

Назначение

Произво-дитель-

Давление, МПа (кгс/см 2) (абс).

Газотурбинный двигатель

Габариты установки,

Масса установки,

Начальное

Конечное

Мощность,

Частота вращения ротора, об/мин

АГПУ-8 «Волга»

Перекачка природного газа по магистраль-

ному газо-проводу

2340х
1320х
1380

ГПА-12 «Урал»

2620х
2670х
1700

2900х
2500х
1760

ГПА-16 «Волга»

14550х
12000х
5300

Литература

1. http://compressormash.ru

3. http://www.new.turbinist.ru

Размещено на Allbest.ru

Подобные документы

    Описание конструкции, назначение и условия работы сварного узла газотурбинного двигателя. Выбор способа сварки и его обоснование, выбор сварочных материалов и режимов сварки. Выбор методов контроля: внешний осмотр и обмер сварных швов, течеискание.

    курсовая работа , добавлен 14.03.2010

    Тип станка (механизма), его основные технические данные. Циклограмма (последовательность операций), режимы работы главного привода. Выбор рода тока и напряжения и типа двигателя. Расчет механических характеристик выбранного двигателя, проверка двигателя.

    курсовая работа , добавлен 09.12.2010

    Использование системного анализа при исследовании масляной системы газотурбинного двигателя с целью изучения его эффективности. Схема маслосистемы с регулированным давлением масла. Структурный, функциональный анализ системы. Инфологическое описание.

    курсовая работа , добавлен 04.05.2011

    Понятие и общая характеристика, назначение и условия работы бурильной колонны, ее внутренняя структура и основные элементы, направления и условия практического применения. Динамические нагрузки на бурильную колонну, определяющие долговечность двигателя.

    реферат , добавлен 25.11.2014

    Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа , добавлен 24.12.2010

    Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа , добавлен 26.12.2011

    Профилирование ступени компрессора приводного газотурбинного двигателя. Построение решеток профилей дозвукового осевого компресора и турбины. Расчет треугольников скоростей на трех радиусах. Эскиз камеры сгорания. Профилирование проточной части диффузора.

    курсовая работа , добавлен 22.02.2012

    Расчет основных показателей во всех основных точках цикла газотурбинного двигателя. Определение количества теплоты участков, изменение параметров для процессов и их работу. Расчет термического коэффициент полезного действия цикла через его характеристики.

    курсовая работа , добавлен 19.05.2009

    Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

    дипломная работа , добавлен 22.01.2012

    Расчет на прочность узла компрессора газотурбинного двигателя: описание конструкции; определение статической прочности рабочей лопатки компрессора низкого давления. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

Ещё в 1970-х годах на базе авиационного двигателя НК-12МА была создана установка для газоперекачивающих агрегата ГПА-Ц-6,3 мощностью 6300 кВт. Создание этого агрегата явилось первым в нашей стране опытом применения модернизированного авиационного двигателя для привода газового нагнетателя. Кроме того, впервые практически было доказано, что газоперекачивающие агрегаты такого типа могут успешно эксплуатироваться в блок-контейнерах без здания турбокомпрессорного цеха, что резко сокращает сроки сооружения компрессорных станций.

Газоперекачивающие агрегаты ГПА-Ц-6,3 были внедрены в эксплуатацию на компрессорных станциях газопроводов «Оренбург-Куйбышев» и «Нижняя Тура-Пермь-Казань-Горький» в 1974-1975г.г. Для газоперекачивающего агрегата ГПА-Ц-6,3 была создана специальная газотурбинная установка НК-12СТ со свободной турбиной на базе этого двигателя с максимальной унификацией узлов и деталей серийного двигателя. При создании было обеспечено запас устойчивости работы при минимальной мощности, достаточно высокая экономичность, умеренная температура газа перед турбиной для гарантирования надёжности двигателя. На рис.3.10. газоперекачивающий агрегат ГПА-Ц-6,3.

Рис. 3.10. Газоперекачивающий агрегат ГПА-Ц-6,3

ГПА-Ц-6,3 представляет собой блочную установку, состоящую из авиационного двигателя, центробежного нагнетателя природного газа и вспомогательных систем и оборудования. Все основные элементы ГПА представляют собой блочные модули, стыкуемые между собой на месте монтажа. Опыт эксплуатации агрегата подтвердил целесообразность использования авиационных двигателей в качестве привода центробежных нагнетателей газа и необходимость совершенствования конструкции агрегата, его основных и вспомогательных систем, компоновочных решений КС, а также комплектно-блочного метода строительства компрессорных станций с подобными агрегатами.

Выпуск блочно-комплектного агрегата ГПА-Ц-6,3 явился толчком для принятия новых технических решений при проектировании КС, привёл к унификации генерального плана для всех проектируемых КС с этими агрегатами. Пылеуловители, АВО газа, установки по подготовке топливного и пускового газа и технологические узлы станций разработаны в блочном исполнении. Из сборных конструкций выполняется блок вспомогательных служб в составе: узла связи, мастерской, котельной, бытовых помещений.

Рис. 3.11. Газотурбинная установка ГПА-Ц-6,3 НК-12СТ

На рис. 3.11. представлена газотурбинная установка.

Капитальные затраты на строительство КС, оборудованной ГПА-Ц-6,3 на 35% ниже, а срок строительства почти в 2 раза меньше по сравнению с КС, оборудованной стационарными газотурбинами такой же мощности.

Применение авиационных двигателе в качестве привода ГПА в блочном исполнении получило распространение благодаря ряду преимуществ перед стационарными:

Большой мощностью при малой массе;

Быстрому монтажу и демонтажу;

Быстрому запуску и выходу на режим;

Дистанционной системе управления и регулирования режима двигателя;

Возможностью создания передвижных газоперекачивающих агрегатов;

Высоким техническим показателям и т.д.

Имеется опыт использования авиационных двигателей и в нефтяной промышленности, например, по эксплуатации турбонасосной установки ПГБУ-2ЖР с авиационным двигателем с системе магистрального нефтепровода Омск-Туймазы 2.

Случайные статьи

Вверх